About Trainer

  • Trainer Information
  • He is Subject Matter Expert with 13 years of experience in multi domain & cross functional areas.
  • He has experience in Data Warehousing, Big Data Analytics.
  • Played a vital role in multiple global engagements involving Hadoop related analytics in last 8 years
  • Actively Participated in many Statistical forums
  • Mentoring multiple consultants for Data Analysis & Data Science area
  • Having more than 5 years’experience as corporate trainer, Class room and Online.

Course Outlines

Data Science Course Curriculum

  • Course Duration : 30 Hours

Introduction to Data Science

Learning Objectives – This module will give you an understanding of Big Data and the Roles and Responsibilities of a Data Scientist. You will learn how Hadoop and R are used in Big Data Analytics and what are the methodologies used in the Analysis. This module will cover common Big Data as well as non-Big Data problems and available methods in Data Science to solve these problems. We will also solve few real-life data sets a Data Scientist encounter in his day to day work using R, Hadoop and Mahout.


  • Introduction to Big Data
  • Roles played by a Data Scientist
  • Analyzing Big Data using Hadoop and R
  • Methodologies used for analysis
  • The Architecture and Methodologies used to solve the Big Data problems,

For example, Data Acquisition from various sources, Data preparation, Data transformation using Map Reduce (RMR), Application of Machine Learning Techniques, Data Visualization etc., problem statement of few data science problems which we shall solve during the course.

Basic Data Manipulation using R

Learning Objectives – In this module, you will learn the various data manipulation techniques using R.

Topics – Understanding vectors in R,

  • Reading data
  • Combining data
  • Sub setting data
  • Sorting data and
  • Some basic data generation functions.

Machine Learning Techniques Using R Part-1

Learning Objectives – In this module, you will get an overview of the Machine Learning Algorithms, and Supervised and Unsupervised Learning Techniques.

  • Machine Learning Overview
  • ML Common Use Cases
  • Understanding Supervised and Unsupervised Learning Techniques
  • Clustering, Similarity Metrics, Distance Measure Types: Euclidean
  • Cosine Measures, Creating predictive models.

Machine Learning Techniques Using R Part-2

Learning Objectives – In this module, you will learn Unsupervised Machine Learning Techniques and the implementation of different algorithms, for example, K-Means Clustering, TF-IDF and Cosine Similarity.


  • Understanding K-Means Clustering,
  • Understanding TF-IDF and Cosine Similarity and their application to Vector Space Model
  • Implementing Association rule mining in R.

Machine Learning Techniques Using R Part-3

Learning Objectives – In this module, you will learn the Supervised Learning Techniques and the implementation of various Techniques, for example, Decision Trees, Random Forest Classifier etc.

Understanding Process flow of Supervised Learning Techniques

  • Decision Tree Classifier
  • How to build Decision trees
  • Random Forest Classifier
  • What is Random Forests
  • Features of Random Forest
  • Out of Box Error Estimate and Variable Importance
  • Naive Bayes Classifier

Introduction to Hadoop Architecture

Learning Objectives – In this module, you will learn the HDFS Architecture, MapReduce Paradigm and
few data acquisition techniques in Hadoop.


  • Hadoop Architecture
  • Common Hadoop commands
  • MapReduce and Data loading techniques (Directly in R and in Hadoop using SQOOP
  • FLUME, and other Data Loading Techniques)
  • Removing anomalies from the data.

Integrating R with Hadoop

Learning Objectives – In this module, you will learn the methods to integrate two popular open source software’s for Big Data analytics: R and Hadoop. You will also learn techniques to write your own Mappers and Reducers.

  • Integrating R with Hadoop using R Hadoop and RMR package
  • Exploring RHIPE (R Hadoop Integrated Programming Environment)
  • Writing MapReduce Jobs in R and executing them on Hadoop.

Mahout Introduction and Algorithm Implementation

Learning Objectives – In this module, you will understand Apache Mahout Machine Learning Library and will also gain an insight into the methods to achieve Parallel Processing using Algorithms in Mahout.


  • Implementing Machine Learning Algorithms on larger Data Sets with Apache Mahout

Additional Mahout Algorithms and Parallel Processing using R

Learning Objectives – In this module, you will learn how to implement Random Forest Classifier with Parallel Processing Library in R

  • Implementation of different Mahout algorithms,
  • Random Forest Classifier with parallel processing Library in R.

Course Info

This Data Science course will cover the whole data life cycle ranging from Data Acquisition and Data Storage using R-Hadoop concepts, Applying modelling through R programming using Machine learning algorithms and illustrate impeccable Data Visualization by leveraging on ‘R’ capabilities.

Course Objectives

After the completion of the Data Science course, you should be able to:

1. Gain insight into the ‘Roles’ played by a Data Scientist

2. Analyze Big Data using R, Hadoop and Machine Learning

3. Understand the Data Analysis Life Cycle

4. Work with different data formats like XML, CSV and SAS, SPSS, etc.

5. Learn tools and techniques for data transformation

6. Understand Data Mining techniques and their implementation

7. Analyze data using machine learning algorithms in R

8. Work with Hadoop Mappers and Reducers to analyze data

9. Implement various Machine Learning Algorithms in Apache Mahout

10. Gain insight into data visualization and optimization techniques

11. Explore the parallel processing feature in R

Who should go for this course?

The course is designed for all those who want to learn machine learning techniques with implementation in R language, and wish to apply these techniques on Big Data. The following professionals can go for this course:

1. Developers aspiring to be a ‘Data Scientist’

2. Analytics Managers who are leading a team of analysts

3. SAS/SPSS Professionals looking to gain understanding in Big Data Analytics

4. Business Analysts wanting to understand Machine Learning (ML) Techniques

5. Information Architects wanting to gain expertise in Predictive Analytics

6. ‘R’ professionals who want to captivate and analyze Big Data

7. Hadoop Professionals who want to learn R and ML techniques

8. Analysts wanting to understand Data Science methodologies

9. Statisticians looking to implement the statistics techniques on Big data Pre-requisites

There is no specific pre-requisite for the course however exposure to core Java and mathematical aptitude will be beneficial. Ravi will provide you complementary self-paced courses covering essentials of Hadoop, R and Mahout to brush up the fundamentals required for the course.

Why Learn Data Science?

Data Science training certifies you with ‘in demand’ Big Data Technologies to help you grab the top paying Data Science job title with Big Data skills and expertise in R programming, Machine Learning and Hadoop framework.